Avoiding Full Extension Field Arithmetic in Pairing Computations

نویسندگان

  • Craig Costello
  • Colin Boyd
  • Juan Manuel González Nieto
  • Kenneth Koon-Ho Wong
چکیده

The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding Up Ate Pairing Computation in Affine Coordinates

At Pairing 2010, Lauter et al’s analysis showed that Ate pairing computation in affine coordinates may be much faster than projective coordinates at high security levels. In this paper, we further investigate techniques to speed up Ate pairing computation in affine coordinates. On the one hand, we improve Ate pairing computation over elliptic curves admitting an even twist by describing an 4-ar...

متن کامل

Delaying Mismatched Field Multiplications in Pairing Computations

Miller’s algorithm for computing pairings involves performing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields Fpk/d , and by elements in the base field Fp. We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multi...

متن کامل

RNS arithmetic in pk and application to fast pairing computation

In this work, we are interested in arithmetic in large prime field and their extensions of small degree. We explain why it is very interesting to use RNS arithmetic for the base field Fp when computations in Fpk have to be done, essentially thanks to lazy reduction. This is for example the case for pairing computations on ordinary curves (as MNT or BN curves). We prove that using RNS can consid...

متن کامل

A study of pairing computation for curves with embedding

This paper presents the first study of pairing computation on curves with embedding degree 15. We compute the Ate and the twisted Ate pairing for a family of curves with parameter ρ 1.5 and embedding degree 15. We use a twist of degree 3 to perform most of the operations in Fp or Fp5 . Furthermore, we present a new arithmetic for extension fields of degree 5. Our computations show that these cu...

متن کامل

Efficient Squaring Algorithm for Xate Pairing with Freeman Curve

Recently, pairing–based cryptographies have attracted much attention. For fast pairing calculation, not only pairing algorithms but also arithmetic operations in extension field should be efficient. Especially for final exponentiation included in pairing calculation, squaring is more important than multiplication. This paper proposes an efficient squaring algorithm in extension field for Freema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010